Принцип работы мобильного телефона. Как это сделано, как это работает, как это устроено

Знаете ли вы, что происходит после того, как вы набрали номер друга на мобильном телефоне? Как сотовая сеть находит его в горах Андалусии или на побережье далекого острова Пасхи? Почему иногда неожиданно разговор прерывается? На прошлой неделе я побывал в компании Beeline и попытался разобраться, как устроена сотовая связь…

Большая площадь населенной части нашей страны покрыта Базовыми Станциями (БС). В поле они выглядят как красно-белые вышки, а в городе спрятаны на крышах нежилых домов. Каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров и общается с мобильным телефоном по служебным или голосовым каналам.

После того, как вы набрали номер друга, ваш телефон связывается с ближайшей к вам Базовой Станцией (БС) по служебному каналу и просит выделить голосовой канал. Базовая Станция отправляет запрос на контроллер (BSC), а тот переадресует его на коммутатор (MSC). Если ваш друг является абонентом той же сотовой сети, то коммутатор сверится с Home Location Register (HLR), выяснит, где в данный момент находится вызываемый абонент (дома, в Турции или на Аляске), и переведет звонок на соответствующий коммутатор, откуда тот его переправит на контроллер и затем на Базовую Станцию. Базовая Станция свяжется с мобильным телефоном и соединит вас с другом. Если ваш друг абонент другой сети или вы звоните на городской телефон, то ваш коммутатор обратится к соответствующему коммутатору другой сети. Сложно? Давайте разберемся подробнее. Базовая Станция представляет из себя пару железных шкафов, запертых в хорошо кондиционируемом помещении. Учитывая, что в Москве было на улице +40, мне захотелось немного пожить в этом помещении. Обычно, Базовая Станция находится либо на чердаке здания, либо в контейнере на крыше:

2.

Антенна Базовой Станции разделена на несколько секторов, каждый из которых «светит» в свою сторону. Вертикальная антенна осуществляет связь с телефонами, круглая соединяет Базовую Станцию с контроллером:

3.

Каждый сектор может обслуживать до 72 звонков одновременно, в зависимости от настройки и конфигурации. Базовая Станция может состоять из 6 секторов, таким образом, одна Базовая Станция может обслуживать до 432 звонков, однако, обычно на станции установлено меньшее количество передатчиков и секторов. Сотовые операторы предпочитают ставить больше БС для улучшения качества связи. Базовая Станция может работать в трех диапазонах: 900 МГц — сигнал на этой частоте распространяется дальше и лучше проникает внутрь зданий 1800 МГц — сигнал распространяется на более короткие расстояния, но позволяет установить большее количество передатчиков на 1 секторе 2100 МГц — Сеть 3G Вот так выглядит шкаф с 3G оборудованием:

4.

На Базовые Станции в полях и деревнях устанавливают передатчики 900 МГц, а в городе, где Базовые Станции натыканы как иглы у ежика, в основном, связь осуществляется на частоте 1800 МГц, хотя на любой Базовой Станции могут присутствовать передатчики всех трех диапазонов одновременно.

5.

6.

Сигнал частотой 900 МГц может бить до 35 километров, хотя «дальность» некоторых Базовых Станций, стоящих вдоль трасс, может доходить до 70 километров, за счет снижения числа одновременно обслуживаемых абонентов на станции в два раза. Соответственно, наш телефон с его маленькой встроенной антенной также может передавать сигнал на расстояние до 70 километров… Все Базовые Станции проектируются таким образом, чтобы обеспечить оптимальное покрытие радиосигналом на уровне земли. Поэтому, несмотря на дальность в 35 километров, на высоту полета самолетов радиосигнал просто не посылается. Тем не менее, некоторые авиакомпании уже начали устанавливать на своих самолетах маломощные базовые станции, которые обеспечивают покрытие внутри самолета. Такая БС соединяется с наземной сотовой сетью с помощью спутникового канала. Система дополняется панелью управления, которая позволяет экипажу включать и выключать систему, а также отдельные типы услуг, например, выключать голос на ночных рейсах. Телефон может измерять уровень сигнала от 32 Базовых Станций одновременно. Информацию о 6-ти лучших (по уровню сигнала) он отправляет по служебному каналу, и уже контроллер (BSC) решает, какой БС передать текущий звонок (Handover), если вы находитесь в движении. Иногда телефон может ошибиться и перебросить вас на БС с худшим сигналом, в этом случае разговор может прерваться. Также может оказаться, что на Базовой Станции, которую выбрал ваш телефон, все голосовые линии заняты. В этом случае разговор также прервется. Еще мне рассказали о так называемой «проблеме верхних этажей». Если вы живете в пентхаусе, то иногда, при переходе из одной комнаты в другую, разговор может прерываться. Это происходит потому, что в одной комнате телефон может «видеть» одну БС, а во второй — другую, если она выходит на другую сторону дома, и, при этом эти 2 Базовые Станции находятся на большом удалении друг от друга и не прописаны как «соседние» у сотового оператора. В этом случае передача звонка с одной БС на другую происходить не будет:

Связь в метро обеспечивается так же, как и на улице: Базовая Станция – контроллер – коммутатор, с той лишь разницей, что применяются там маленькие Базовые Станции, а в тоннеле покрытие обеспечивается не обычной антенной, а специальным излучающим кабелем. Как я уже писал выше, одна БС может производить до 432 звонков одновременно. Обычно этой мощности хватает за глаза, но, например, во время некоторых праздников БС может не справиться с количеством желающих позвонить. Обычно это случается на Новый Год, когда все начинают поздравлять друг друга. SMS передаются по служебным каналам. На 8 марта и 23 февраля люди предпочитают поздравлять друг друга с помощью SMS, пересылая смешные стишки, и телефоны зачастую не могут договориться с БС о выделении голосового канала. Мне рассказали интересный случай. Из одного района Москвы стали поступать жалобы от абонентов о том, что они не могут никуда дозвониться. Технические специалисты стали разбираться. Большинство голосовых каналов было свободно, а все служебные были заняты. Оказалось, что рядом с этой БС находился институт, в котором шли экзамены и студенты беспрерывно обменивались эсэмэсками. Длинные SMS телефон делит на несколько коротких и отправляет каждое отдельно. Сотрудники технической службы советуют отправлять такие поздравления с помощью MMS. Это будет быстрее и дешевле. С Базовой Станции звонок попадает на контроллер. Выглядит он так же скучно, как и сама БС — это просто набор шкафов:

7.

В зависимости от оборудования, контроллер может обслуживать до 60 Базовых Станций. Связь между БС и контроллером (BSC) может осуществляться по радиорелейному каналу либо по оптике. Контроллер осуществляет управление работой радиоканалов, в т.ч. контролирует передвижение абонента, передачу сигнала с одной БС на другую. Гораздо интереснее выглядит коммутатор:

8.

9.

Каждый коммутатор обслуживает от 2 до 30 контроллеров. Он занимает уже большой зал, заставленный различными шкафами с оборудованием:

10.

11.

12.

Коммутатор осуществляет управление трафиком. Помните старые фильмы, где люди сначала дозванивались до «девушки», а затем она уже соединяла их с другим абонентом, перетыкивая проводки? Этим же занимаются и современные коммутаторы:

13.

Для контроля за сетью у Билайна есть несколько автомобилей, которые они ласково называют «ежики». Они передвигаются по городу и измеряют уровень сигнала собственной сети, а также уровень сети коллег из «Большой Тройки»:

14.

Вся крыша такого автомобиля утыкана антеннами:

15.

Внутри стоит оборудование, осуществляющее сотни звонков и снимающее информацию:

16.

Круглосуточный контроль за коммутаторами и контроллерами осуществляется из Центра Управления Полетами Центра Контроля Сети (ЦКС):

17.

Существует 3 основных направления по контролю за сотовой сетью: аварийность, статистика и обратная связь от абонентов. Так же, как и в самолетах, на всем оборудовании сотовой сети стоят датчики, которые посылают сигнал в ЦКС и выводят информацию на компьютеры диспетчеров. Если какое-то оборудование вышло из строя, то на мониторе начнет «мигать лампочка». ЦКС также отслеживает статистику по всем коммутаторам и контроллерам. Он анализирует ее, сравнивая с предыдущими периодами (часом, сутками, неделей и т.д.). Если статистика какого-то из узлов стала резко отличаться от предыдущих показателей, то на мониторе опять начнет «мигать лампочка». Обратную связь принимают операторы абонентской службы. Если они не могут решить проблему, то звонок переводится на технического специалиста. Если же и он оказывается бессильным, то в компании создается «инцидент», который решают инженеры, занимающиеся эксплуатацией соответствующего оборудования. За коммутаторами круглосуточно следят по 2 инженера:

18.

На графике показана активность московских коммутаторов. Хорошо видно, что ночью практически никто не звонит:

19.

Контроль за контроллерами (простите за тавтологию) осуществляется со второго этажа Центра Контроля Сети:

22.

21.

Многие ли из нас задумываются, что происходит после того, как мы нажимаем кнопку вызова на мобильном телефоне? Как работают сотовые сети ?

Скорее всего, нет. Чаще всего мы набираем федеральный номер собеседника на автомате, как правило, по делу, поэтому что там и как устроено нас не интересует в конкретный момент времени. А ведь это удивительные вещи. Как можно позвонить человеку, находящемуся в горах или посреди океана? Почему во время разговора мы можем плохо слышать друг друга, а то и вовсе прерваться. Наша статья попробует пролить свет на принцип работы сотовой связи.

Итак, большая часть плотно заселенной территории России, покрыта так называемыми БС, что без сокращения именуются Базовыми Станциями. Многие могли обращать на них свое внимание, путешествуя между городами. В открытом поле, Базовые станции больше похожи на вышки, которые имеют красный и белый цвет. А вот в городе такие БС продуманно размещены на крышах нежилых высоток. Эти вышки способны поймать сигнал от любого сотового телефона, находящегося территориально в радиусе не более, чем 35 километров. "Общение" между БС и телефоном происходит через специальный служебный или голосовой канал.

Как только человек набирает нужный ему номер на мобильном устройстве, аппарат находит самую близко расположенную к нему Базовую Станцию поэтому специальному служебному каналу и просит у нее выделить голосовой канал. Вышка после получения запроса от устройства отправляет запрос на так называемый контроллер, который сокращенно будем называть BSC. Этот самый контроллер перенаправляет запрос уже на коммутатор. "Умный" коммутатор MSC определит, к какому оператору подключен вызываемый абонент.

Если оказывается, что звонок совершается на телефон внутри одной сети, например от абонента Билайн другому абоненту этого оператора, или внутри МТС, внутри Мегафон и так далее, то коммутатор начнет выяснять местоположение вызываемого абонента. Благодаря Home Location Register коммутатор найдет, где находится необходимый человек. Он может быть где угодно, дома, на работе, на даче или вообще в другой стране. Это не помешает коммутатору перевести звонок на соответствующий коммутатор. И тут "клубок" начнет "разматываться". То есть звонок от коммутатора - "ответчика" пойдет на контроллер - "ответчика", затем на его Базовую Станцию и на мобильный телефон соответственно.

Если же коммутатор выяснит, что вызываемый абонент принадлежит другому оператору, то отправит запрос на коммутатор уже другой сети.
Согласитесь, схема достаточно простая, но трудно представима. Как "умная" Базовая Станция находит телефон, отправляет запрос, а коммутатор сам определяет оператора и другого коммутатора. Что такое Базовая станция на самом деле? Оказывается, это несколько железных шкафов, которые располагаются либор под самой крышей здания, на чердаке или в специальном контейнере. Главное условие - помещение должно отлично кондиционироваться.

Логично, что у БС есть антенна, которая и помогает ей "ловить" связь. Антенна у БС состоит из нескольких частей (секторов), каждый из которых отвечает за территорию. Часть антенны, которая расположена вертикально отвечает за связь с мобильными телефонами, а круглая предназначены для связи с контроллером.

Один сектор способен одновременно принимать звонки от семидесяти телефонных аппаратов. Если учесть, что одна БС может состоять из шести секторов, то одновременно она спокойно обслужит 6*72=432 звонка.

Как правило, такой мощности Базовой станции хватает "с головой". Конечно, случаются ситуации, когда все население нашей страны начинает одновременно звонить друг другу. Это новый Год. Некоторым достаточно лишь произнести в трубку заветную фразу «С Новым Годом!», другие же готовы проговаривать часы с безлимитным тарифом от "Корпорации Связи" , обсуждая гостей и планы на всю ночь.

Однако вне зависимости от продолжительности разговора, Базовые станции не справляются, и дозвониться до абонента бывает очень сложно. Но в будние дни большую часть года БС из шести секторов вполне достаточно, тем более для оптимальной загруженности оператору подбирают Станции в соответствии с заселенностью территории. Некоторые операторы отдают свое предпочтение большим БС в целях улучшения качества предоставляемой связи.

Существует три диапазона, в которых может работать БС и которые определяют количество поддерживаемых аппаратов и охватываемое расстояние. В диапазоне 900 МГЦ станция способна охватить большую территорию, а вот в диапазоне 1800 МГц расстояние существенно сократится, зато увеличится число подключаемых передатчиков. Третий диапазон в 2100 МГц предполагает уже связь нового поколения - 3G.
Понятно, что в малонаселенных пунктах целесообразнее установить Базовую Станцию на 900 МГц, а вот в городе подойдет 1800 МГц, чтобы лучше проникать сквозь толстые бетонные стены, причем понадобится этих БС в десять раз больше, чем в поселке. Отметим, что одна БС может поддерживать три диапазона сразу.

Станции в режиме 900 МГц охватывают территорию радиусом в 35 км, однако если в данный момент она обслуживает мало телефонов, то может "пробить" и до 70 км. Естественно, наши мобильные телефоны могут "находить" БС даже на расстоянии 70 км. Базовые Станции разработаны так, чтобы максимально покрывать земную поверхность и обеспечивать большое количество людей связью именно на земле, поэтому при возможности ловить сигналы на расстоянии минимум 35 километров, на такое же расстояние, но в небо, Базовые Станции не "пробивают".

Для того, чтобы обеспечить своих пассажиров сотовой связью, некоторые авиакомпании начинают размещать маленькие БС на бортах самолетов. Связь "небесной" Базовой Станции с "земной" осуществляется с помощью спутникового канала. Так как работа мобильных устройств может помешать процессу полета, бортовые БС легко могут включаться / выключаться, имеют несколько режимов работы, вплоть до полного отключения передачи голосовых сообщений. Во время полета телефон может случайно быть переведен на базовую станцию с худшим сигналом или без свободных каналов. В таком случае звонок прервется. Все это тонкости работы сотовой связи в небе в движении.

Помимо самолетов, некоторые проблемы возникают и у жителей пентхаусов. Даже безлимитный тариф и ВИП - условия у оператора сотовой связи не помогут в случае разных БС. Житель квартиры на высоком этаже, переходя из одной комнаты в другую, потеряет связь. Это может произойти из-за того, что телефон в одной комнате "видит" одну БС, а в другой он "обнаруживает" другую. Поэтому при разговоре связь прерывается, так как эти БС находятся на относительном расстоянии друг от друга и даже не считаются "соседними" у одного оператора.

В теоретической части мы не будем углубляться в историю создания сотовой связи, о её основателях, хронологию стандартов и т.д. Кому это интересно – материала предостаточно как в печатных изданиях, так и в сети интернет.

Рассмотрим, что же из себя представляет мобильный (сотовый) телефон.

На рисунке очень упрощённо показан принцип работы:

Рис.1 Принцип работы сотового телефона

Сотовый телефон – это приёмо-передатчик, работающий на одной из частот в диапазоне 850МГц, 900МГц, 1800МГц, 1900МГц. Причём приём и передача разнесены по частотам.

Система GSM состоит из 3-х основных компонентов, таких как:

Подсистема базовых станций (BSS – Base Station Subsystem);

Подсистема переключения/коммутации (NSS –NetworkSwitchingSubsystem);

Центр управления и обслуживания (OMC – Operation and Maintenance Centre);

В двух словах работает это так:

Сотовый (мобильный) телефон взаимодействует с сетью базовых станций (БС). Вышки БС обычно устанавливают либо на своих наземных мачтах, либо на крышах домов или других сооружений, или же на арендованных уже существующих вышках всяческих ретрансляторов радио/ТВ и т.п., а также на высотных трубах котелен и других промышленных сооружений.

Телефон после включения и всё остальное время мониторит (прослушивает, сканирует) эфир на наличие GSM-сигнала своей базовой станции. Сигнал своей сети телефон определяет по специальному идентификатору. Если таковой имеется (телефон находится в зоне покрытия сети), то телефон выбирает лучшую по уровню сигнала частоту и на этой частоте посылает БС запрос нарегистрацию в сети.

Процесс регистрации по сути является процессом аутентификации (авторизации). Его суть заключается в том, что каждая SIM-карта, вставленная в телефон, имеет свои уникальные идентификаторы IMSI (International Mobile Subscriber Identity) и Ki (Key for Identification). Эти самые IMSI и Ki заносятся в базу центра аутентификации (AuC) при поступлении изготовленных SIM-карт оператору связи. При регистрации телефона в сети идентификаторы передаются БС, а именно AuC. Дальше AuC (центр идентификации) передаёт телефону некоторое случайное число, которое является ключом для выполнения вычислений по специальному алгоритму. Это вычисление происходит одновременно в мобильном телефоне и AuC, после чего оба результата сравниваются. Если они совпадают, то SIM-карта признаётся подлинной и телефон регистрируется в сети.

Для телефона же идентификатором в сети является его уникальный номер IMEI (International Mobile Equipment Identity). Этот номер обычно состоит из 15 цифр в десятичном представлении. Например 35366300/758647/0. Первые восемь цифр описывают модель телефона и его происхождение. Оставшиеся – серийный номер телефона и контрольное число.

Данный номер хранится в энергонезависимой памяти телефона. В устаревших моделях этот номер можно сменить с помощью специального программного обеспечения (ПО) и соответствующего программатора (иногда и дата-кабеля), а в современных телефонах он дублируется. Один экземпляр номера хранится в области памяти, которую можно программировать, а дубликат – в зоне памяти OTP (One Time Programming), которая программируется производителем один раз и не имеет возможности перепрограммирования.

Так вот, если даже изменить номер в первой области памяти, то телефон, при включении, сравнивает данные обеих областей памяти, и, если обнаруживаются разные номера IMEI – телефон блокируется. Для чего всё это менять, спросите вы? На самом деле законодательство большинства стран запрещает это делать. Телефон по номеру IMEI отслеживается в сети. Соответственно при краже телефона его можно отследить и изъять. А если успеть изменить этот номер на любой другой (рабочий), то шансы найти телефон сводятся к нулю. Этими вопросами занимаются спецслужбы при соответствующей помощи оператора сети и т.д. Поэтому углубляться в эту тему не стану. Нас интересует чисто технический момент смены номера IMEI.

Дело в том, что при определённых обстоятельствах данный номер может повредиться в результате сбоя ПО или неправильного его обновления и тогда телефон абсолютно не пригоден для эксплуатации. Вот тут на помощь и приходят все средства, чтобы восстановить IMEI и работоспособность аппарата. Подробнее этот момент будет рассмотрен в разделе программного ремонта телефона.

Теперь кратенько о передаче голоса от абонента к абоненту в стандарте GSM. На самом деле это технически очень сложный процесс, который абсолютно отличается от привычной передачи голоса по аналоговым сетям как, например, домашний проводной/радио телефон. Чем-то отдалённо похожи цифровые DECT-радиотелефоны, но реализация всё равно другая.

Дело в том, что голос абонента, прежде чем будет передан в эфир, подвергается множеству преобразований. Аналоговый сигнал разбивается на отрезки длительностью 20мс, после чего преобразовывается в цифровой, после чего кодируется путём применения алгоритмов шифрования с т.н. открытым ключом – система EFR (Enhanced Full Rate - усовершенствованная система кодирования речи, разработанная финской компанией Nokia).

Все сигналы кодека обрабатываются очень полезным алгоритмом на основе принципа DTX(Discontinuous Transmission) –прерывистой передачи речи. Его полезность заключается в том, что он управляет передатчиком телефона, включая его только в том момент, когда начинается произношение речи и отключает в паузах между разговором. Всё это достигается с помощью включенного в кодек VAD (Voice Activated Detector) –детектор активности речи.

У принимаемого абонента все преобразования происходят в обратном порядке.

Сотовая связь считается одним из самых полезных изобретений человечества - наряду с колесом, электричеством, интернетом и компьютером. И лишь за несколько десятилетий эта технология пережила целый ряд революций. С чего начиналось беспроводное общение, как работают соты и какие возможности откроет новый мобильный стандарт 5G?

Первое использование подвижной телефонной радиосвязи относится к 1921 году - тогда в США полиция Детройта использовала одностороннюю диспетчерскую связь в диапазоне 2 МГц для передачи информации от центрального передатчика к приемникам в автомобилях полицейских.

Как появилась сотовая связь

Впервые идея сотовой связи была выдвинута в 1947 году - над ней работали инженеры из Bell Labs Дуглас Ринг и Рэй Янг. Однако реальные перспективы ее воплощения стали вырисовываться только к началу 1970-х годов, когда сотрудники компании разработали рабочую архитектуру аппаратной платформы сотовой связи.

Так, американские инженеры предложили размещать передающие станции не в центре, а по углам «ячеек», а чуть позже была придумана технология, позволяющая абонентам передвигаться между этими «сотами», не прерывая связи. После этого осталось разработать действующее оборудование для такой технологии.

Задачу успешно решила компания Motorola - ее инженер Мартин Купер 3 апреля 1973 года продемонстрировал первый работающий прототип мобильного телефона. Он позвонил начальнику исследовательского отдела компании-конкурента прямо с улицы и рассказал ему о собственных успехах.

Руководство Motorola немедленно вложило в перспективный проект 100 миллионов долларов, однако на коммерческий рынок технология вышла только через десять лет. Такая задержка связана с тем, что сначала требовалось создать глобальную инфраструктуру базовых станций сотовой связи.


На территории США этой работой занялась компания AT&T - телекоммуникационный гигант добился от федерального правительства лицензирования нужных частот и построил первую сотовую сеть, которая охватила крупнейшие американские города. В качестве первого мобильника выступила знаменитая модель Motorola DynaTAC 8000.

В продажу первый сотовый телефон поступил 6 марта 1983 года. Он весил почти 800 граммов, мог работать на одном заряде 30 минут в режиме разговора и заряжался около 10 часов. При этом аппарат стоил 3995 долларов - баснословную сумму по тем временам. Несмотря на это, мобильник мгновенно стал популярен.

Почему связь называется сотовой

Принцип мобильной связи прост - территория, на которой обеспечивается соединение абонентов, разбивается на отдельные ячейки или «соты», каждую из которых обслуживает базовая станция. При этом в каждой «соте» абонент получает идентичные услуги, поэтому сам он никак не чувствует пересечения этих виртуальных границ.

Обычно базовая станция в виде пары железных шкафов с оборудованием и антенн размещается на специально построенной вышке, однако в городе их нередко размещают на крышах высотных зданий. В среднем каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров.

Для улучшения качества обслуживания операторы также устанавливают фемтосоты - маломощные и миниатюрные станции сотовой связи, предназначенные для обслуживания небольшой территории. Они позволяют резко улучшить покрытие в тех местах, где это необходимо.Сотовую связь в России объединят с космосом

Находящийся в сети мобильник прослушивает эфир и находит сигнал базовой станции. В современную SIM-карту, кроме процессора и оперативки, вшит уникальный ключ, позволяющий авторизоваться в сотовой сети. Связь телефона со станцией может осуществляться по разным протоколам - например, цифровым DAMPS, CDMA, GSM, UMTS.

Сотовые сети разных операторов соединены друг с другом, а также со стационарной телефонной сетью. Если телефон выходит из поля действия базовой станции, аппарат налаживает связь с другими - установленное абонентом соединение незаметно передается другим «сотам», что обеспечивает непрерывную связь при перемещениях.

В России для вещания сертифицированы три диапазона - 800 МГц, 1800 МГц и 2600 МГц. Диапазон 1800 МГц считается самым популярным в мире, так как сочетает высокую емкость, большой радиус действия и высокую проникающую способность. Именно в нем сейчас работают большинство мобильных сетей.

Какие стандарты мобильной связи бывают

Первые мобильники работали с технологий 1G - это самое первое поколение сотовой связи, которое опиралось на аналоговые телекоммуникационные стандарты, главным из которых стал NMT - Nordic Mobile Telephone. Он предназначался исключительно для передачи голосового трафика.

К 1991 году относят рождение 2G - главным стандартом нового поколения стал GSM (Global System for Mobile Communications). Данный стандарт поддерживается до сих пор. Связь в этом стандарте стала цифровой, появилась возможность шифрования голосового трафика и отправки СМС.

Скорость передачи данных внутри GSM не превышала 9,6 кбит/с, что делало невозможной передачу видео или высококачественного звука. Проблему был призван решить стандарт GPRS, известный как 2.5G. Он впервые позволил пользоваться сетью Интернет владельцам мобильных телефонов.


Такой стандарт уже обеспечил скорость передачи данных до 114 Кбит/c. Однако вскоре он также перестал удовлетворять постоянно растущие запросы пользователей. Для решения этой проблемы в 2000 году был разработан стандарт 3G, который обеспечивал доступ к услугам Сети на скорости передачи данных в 2 Мбита.

Еще одним отличием 3G стало присвоение каждому абоненту IP-адреса, что позволило превратить мобильники в маленькие компьютеры, подключенные к интернету. Первая коммерческая сеть 3G была запущена 1 октября 2001 года в Японии. В дальнейшем пропускная способность стандарта неоднократно увеличивалась.

Наиболее современный стандарт - связь четвертого поколения 4G, которая предназначена только для высокоскоростных сервисов передачи данных. Пропускная способность сети 4G способна достигать 300 Мбит/сек, что дает пользователю практически неограниченные возможности работы в интернете.

Сотовая связь будущего

Стандарт 4G заточен на непрерывную передачу гигабайтов информации, в нем даже отсутствует канал для передачи голоса. За счет чрезвычайно эффективных схем мультиплексирования загрузка фильма высокого разрешения в такой сети займет у пользователя 10-15 минут. Однако даже его возможности уже считаются ограниченными.

В 2020 году ожидается официальный запуск нового поколения связи стандарта 5G, который позволит передачу больших объемов данных на сверхвысоких скоростях до 10 Гбит/сек. Кроме этого, стандарт позволит подключить к высокоскоростному интернету до 100 миллиардов устройств.

Именно 5G позволит появиться настоящему интернету вещей - миллиарды устройств будут обмениваться информацией в реальном времени. По оценке экспертов, сетевой трафик скоро вырастет на 400%. Например, автомобили начнут постоянно находиться в глобальной Сети и получать данные о дорожной обстановке.

Низкая степень задержки обеспечит связь между транспортными средствами и инфраструктурой в режиме реального времени. Ожидается, что надежное и постоянно действующее соединение впервые откроет возможность для запуска на дорогах полностью автономных транспортных средств.

Российские операторы уже экспериментируют с новыми спецификациями - например, работы в этом направлении ведет «Ростелеком». Компания подписала соглашение о строительстве сетей 5G в инновационном центре «Сколково». Реализация проекта входит в государственную программу «Цифровая экономика», недавно утвержденную правительством.

Вряд ли возможно сегодня найти человека, который бы никогда не пользовался сотовым телефоном. Но каждый ли понимает, как работает сотовая связь? Как устроено и работает то, к чему мы все давно привыкли? Передаются ли сигналы от базовых станций про проводам или все это действует как-то иначе? А может быть вся сотовая связь функционирует лишь за счет радиоволн? На эти и другие вопросы попробуем дать ответ в нашей статье, оставив описание стандарта GSM за ее рамками.

В момент, когда человек пытается совершить вызов со своего мобильного телефона, или когда начинают звонить ему, телефон посредством радиоволн подключается к одной из базовых станций (наиболее доступной), к одной из ее антенн. Базовые станции можно наблюдать то там, то тут, взглянув на дома наших городов, на крыши и на фасады промышленных зданий, на высотки, наконец на специально возведенные для станций мачты красно-белого цвета (особенно вдоль автострад).

Станции эти выглядят как прямоугольные коробки серого цвета, из которых в разные стороны торчат разнообразные антенны (обычно до 12 антенн). Антенны здесь работают как на прием, так и на передачу, и принадлежат они оператору сотовой связи. Антенны базовой станции направлены во всевозможные стороны (сектора), чтобы обеспечить «покрытие сетью» абонентам со всех сторон на расстоянии до 35 километров.

Антенна одного сектора в состоянии обслуживать одновременно до 72 звонков, и если антенн 12, то представьте себе: 864 звонка способна в принципе обслужить одна крупная базовая станция одновременно! Хотя обычно ограничиваются 432 каналами (72*6). Каждая антенна соединена кабелем с управляющим блоком базовой станции. А уже блоки нескольких базовых станций (каждая станция обслуживает свою часть территории) присоединяются к контроллеру. К одному контроллеру присоединяется до 15 базовых станций.

Базовая станция в принципе способна функционировать на трех диапазонах: сигнал 900 МГц лучше проникает внутрь зданий и сооружений, распространяется дальше, поэтому именно данный диапазон часто используют в деревнях и на полях; сигнал на частоте 1800 МГц распространяется не так далеко, но на одном секторе устанавливают больше передатчиков, поэтому в городах ставят чаще именно такие станции; наконец 2100 МГц — это сеть 3G.

Контроллеров, конечно, в населенном пункте или районе, может быть несколько, поэтому контроллеры, в свою очередь, присоединяются кабелями к коммутатору. Задача коммутатора — связать сети операторов мобильной связи друг с другом и с городскими линиями обычной телефонной связи, междугородной связи и международной связи. Если сеть небольшая, то достаточно одного коммутатора, если крупная — используются два и более коммутаторов. Коммутаторы объединяются между собой проводами.

В процессе перемещения человека, разговаривающего по мобильнику, по улице, например: идет он пешком, едет в общественном транспорте, или передвигается на личном авто, - его телефон не должен ни на мгновение потерять сеть, нельзя оборвать разговор.

Непрерывность связи получается благодаря способности сети базовых станций очень оперативно переключать абонента с одной антенны на другую в процессе его перемещения от зоны действия одной антенны — в зону действия другой (от соты к соте). Абонент сам не замечает, как перестает быть связан с одной базовой станцией, и подключен уже к другой, как переключается от антенны — к антенне, от станции — к станции, от контроллера — к контроллеру…

При этом коммутатор обеспечивает оптимальное распределение нагрузки по многоуровневой схеме сети, чтобы снизить вероятность выхода оборудования из строя. Многоуровневая сеть строится так: сотовый телефон — базовая станция — контроллер — коммутатор.

Допустим, мы совершаем вызов, и вот сигнал уже добрался до коммутатора. Коммутатор передает наш звонок в сторону абонента назначения — в городскую сеть, в сеть международной или междугородней связи, либо на сеть другого мобильного оператора. Все это происходит очень быстро с использованием высокоскоростных оптоволоконных кабельных каналов.

Далее наш звонок поступает на коммутатор, что расположен на стороне принимающего звонок (вызываемого нами) абонента. В «приемном» коммутаторе уже есть данные о том, где находится вызываемый абонент, в какой зоне действия сети: какой контроллер, какая базовая станция. И вот, с базовой станции начинается опрос сети, находится адресат, и на его телефон «поступает вызов».

Вся цепочка описанных событий, с момента набора номера до момента раздавшегося на принимающей стороне звонка, длится обычно не более 3 секунд. Так мы можем сегодня звонить в любую точку мира.

Андрей Повный